一道本不卡免费高清

日本黃色大全視頻

一道本不卡免费高清Fibrosis – significant tissue scarring – is at the root of around half of disease in all organs, not just the lung, and to date there haven’t really been any good therapies that directly target this process.

“The most exciting possibility to me is that we could treat chronic fibrotic diseases with some of the therapies we have developed,” says Sheppard.


 

 

, PhD, a professor of Pharmaceutical Chemistry, directs a technology research resource center devoted to understanding biological function by visualizing and analyzing the complex 3-D shapes and motions that molecules undergo as they interact with other 3-D molecules, such as DNA, RNA, other proteins and small molecules such as drugs.

一道本不卡免费高清“We are at an exciting time in science because many advances in experimental and computational techniques are generating data about the three-dimensional structures of molecules,” including X-ray crystallography, electron microscopy and hybrid modeling methods, says Ferrin. His develops technology – software and advanced web-based resources – to make sense of the diverse types of data being generated.

一道本不卡免费高清An example of the kinds of stories that Ferrin’s visualization tools are telling is the motions that cells undergo as they migrate within the body, such as when a neutrophilic white blood cell migrates to the site of an infection or when cancer cells metastasize. Defects in the proteins that control cell mobility could lead to the inability of the body to fight off infection or the spread of cancer.

一道本不卡免费高清The tools Ferrin’s lab provides for free are invaluable for supporting other research. His , an interactive visualization system for exploratory research and analysis, has been downloaded by a half-million labs worldwide and cited in more than 9,000 publications to date.

一道本不卡免费高清Ferrin’s tools provide a range of insight into molecular function and can provide tools for translational medicine.

“In the Department of Pharmaceutical Chemistry, we are interested in developing new drugs that are very specific to the proteins they bind to,” he says. “The vision is that we will be able to carefully control a biochemical process such that a drug molecule doesn’t bind to other undesirable protein targets that typically cause unwanted side effects.”


 

 

, PhD, an assistant professor of Cell and Tissue Biology.

一道本不卡免费高清While nearly all the molecules involved in this process are known, the underlying mechanics of how it happens are not understood. Dumont’s lab studies how tiny cellular machines generate forces to power chromosome movement to opposite sides of the cell – and how they do so with such accuracy. This process is coordinated by molecular machines called the spindle and kinetochore: the spindle pulls on chromosomes, and the kinetochore links spindle fibers to chromosomes.

One project Dumont is working on is to develop tools to externally control mechanical forces exerted by the spindle on the kinetochore inside cells. The idea is to probe whether, and how, the kinetochore listens to mechanical signals to determine whether chromosomes are correctly attached to the spindle fibers that will carry them to opposite sides of a dividing cell.

一道本不卡免费高清“Finding out if, and how, kinectochores listen to mechanical signals is interesting to gain insight into how molecular-scale building blocks so robustly control the cellular-scale process of chromosome segregation,” says Dumont. “By understanding how such a basic process works, we might get surprising information on how to control it, and we might stumble on a new way of identifying a segregation problem or a new therapy.”


 

 

, PhD, wants to make those patient-monitoring alarms smarter and more personalized using data so there can be “super alarms” tailored for individual patients with input from their electronic health records (EHR). The goal is to create an alarm that clinicians won’t ignore.

一道本不卡免费高清The problem of alarm fatigue is widespread and well documented. A team of researchers at UCSF in 2014 published a study that logged more than 2.5 million patient alarms in one month at UCSF Medical Center. The constant alarms can lead to clinicians being desensitized to the noise and ignoring the alerts or silencing them.

Several years ago, Hu was introduced to the problem and got to know , PhD, RN, FAAN, who was approaching the problem from the nursing side, working to understand the cause of alarm fatigue. Hu, who has a degree in biomedical engineering, started to think about how to tackle the problem from the engineering side, drawing on his prior work on an algorithm to predict intracranial pressure in patients with severe brain injuries.

一道本不卡免费高清His work now includes being part of a cross-disciplinary team that has been building an algorithm that will be able to more precisely monitor patients in the ICU. This new super alarm "integrates data from not only the patient monitors but also from EHR, and can identify predictive combinations of different elements from both systems,” Hu says. “You have to connect with the EHR system to really understand the context of any given patient.”

Such an algorithm would be a leap forward from current ICU patient monitors, which fundamentally have changed little in the last few decades. “In this project, we are going to pioneer a different way of doing things,” Hu says.


一道本不卡免费高清, established in 2006, provides services and tools to clinical and translational investigators at UCSF and beyond.

One large component of CTSI is training for junior faculty and pre-professional students, residents and fellows that is focused on precision health, says , MD, who joined UCSF last year to direct the institute. “It is a way to gather all the information about an individual – from genetics and many other sources – to understand that information in the context of what’s available in our clinical toolkit to guide therapy,” she says.

一道本不卡免费高清Beyond training resources, the CTSI supports research in a dazzling variety of ways, from digital health resources and expert consultation to providing partnerships and funding. They have strong connections with the other UC health campuses, enabling a California-wide health record database containing 14 million searchable records and knocking down walls between the campuses for enrollment in clinical studies.

“Our goal is to be able to quickly deliver the most cutting-edge hypothesis-driven treatments to our patients across California,” says Grandis.

One CTSI project aims to integrate information from thousands of multiple sclerosis (MS) patients and illustrates how research can sort out differences between individuals to guide therapy. The work resulted in a tool to help understand disease progression and choose optimal therapy based on individual prognostic MS biomarkers. The CTSI provided initial pilot funding and is currently assisting in rolling out the tool to patient clinics.

“As a practicing clinician before I came to UCSF, I had to rely solely on literature and instinct for treating the patients in front of me,” says Grandis. “By integrating many data points, we at the CTSI aim to guide clinical decision-making.”

Topics